An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations
نویسندگان
چکیده
Article history: Received 15 December 2015 Received in revised form 20 December 2016 Accepted 17 January 2017 Available online 24 January 2017
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملEfficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations
Many kinetic models of the Boltzmann equation have a diiusive scaling that leads to the Navier-Stokes type parabolic equations as the small scaling parameter approaches zero. In practical applications, it is desirable to develop a class of numerical schemes that can work uniformly with respect to this relaxation parameter, from the rareeed kinetic regimes to the hydrodynamic diiusive regimes. A...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملAsymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows
We consider a system coupling the incompressible Navier–Stokes equations to the Vlasov– Fokker–Planck equation. Such a problem arises in the description of particulate flows. We design a numerical scheme to simulate the behavior of the system. This scheme is asymptotic-preserving, thus efficient in both the kinetic and hydrodynamic regimes. It has a numerical stability condition controlled by t...
متن کاملAttractors for Noncompact Nonautonomous Systems via Energy Equations
An extension to the nonautonomous case of the energy equation method for proving the existence of attractors for noncompact systems is presented. A suitable generalization of the asymptotic compactness property to the nonautonomous case, termed uniform asymptotic compactness, is given, and conditions on the energy equation associated with an abstract class of equations that assure the uniform a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 335 شماره
صفحات -
تاریخ انتشار 2017